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Summary. The flux of permeant species through a membrane is examined using 
discrete state stochastic models for the transport process within the membrane. While a 
membrane flux is maintained due to a concentration gradient between bathing solutions, 
the distribution of species within the membrane evolves to a time invariant configuration 
which can differ significantly from the equilibrium configuration. Some special properties 
of these stationary states are examined using linear, microcanonical models for the 
membrane transport process. Analysis of these models reveals properties which are 
masked by the phenomenological analysis of irreversible thermodynamics. For example, 
the models can be used to study the nature of multi-state relaxation within the membrane 
by observation of the time dependence of the net membrane flux when the membrane 
is perturbed from its stationary state distribution. Under some conditions, multi-state 
models will produce relaxation similar to that observed for single-state processes. The 
symmetry within the membrane is a critical factor for monitoring relaxation processes 
within the membrane. Because of the stationary nature of the membrane configuration, 
statistical thermodynamic variables can be defined for the membrane configuration. The 
total system is not in equilibrium since the baths must still be described by dissipation 
functions. In the stationary state, the configurational entropy of the membrane is lowered 
relative to equilibrium and is shown to depend quadratically on the time independent 
parameter (j/p) where j is the membrane flux and p is a characteristic transition proba- 
bility for intra-membrane transitions. The basic membrane system serves as a quantitative 
example of the entropy reduction possible in a stationary state system. An allosteric 
transition mediated by the stationary state configuration is examined as a means of 
utilizing this negentropy production. 

A l though  the t r anspo r t  of ions and  molecules  across  biological  m e m -  

branes  is the subject  of  extensive exper imenta l  study, the theoret ical  f r ame-  

works  avai lable  for  analysis  of these observa t ions  are still ex t remely  limited. 

The  phenomeno log ica l  equat ions  of irreversible t h e r m o d y n a m i c s  are used 

m o s t  f requent ly  since they  can  be related directly to the observed  experi-  

men ta l  fluxes and  forces.  Alternat ively,  t he rmodynamic -k ine t i c  equat ions  

such as the Nerns t -P lanck  equa t ion  or discrete state models  such as the 
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Parlin-Eyring model (1954) provide an effective approach to the description 
of membrane transport processes although they require a detailed model 
of the membrane. Analytical solutions require approximations such as the 
constant field approximation (Goldman, 1943). For membrane models 
which more accurately reflect specific situations, numerical integration 
methods must be used. 

Although both continuum and discrete state models require detailed 
knowledge of membrane structure, the discrete state models do possess a 
number of advantages over the continuum models. In a bilayer membrane 
with its molecular dimensions (7.5 nm), a continuum model provides a less 
accurate picture than a discrete site model where motion across the mem- 
brane proceeds in a series of jumps between "holes" generated by the 
thermal motions of the membrane model. Transitions between the hydro- 
phobic phase and the polar boundaries of the bilayer can be described by 
discrete transition probabilities eliminating some of the problems of a multi- 
boundary analysis. 

Experiments on excitable membranes indicate that potassium and sodium 
ions do not diffuse through the membrane but permeate through specific 
independent channels. The mechanisms for the passage of sodium and 
potassium ions are quite different. Potassium ion in excitable membranes 
exhibits the anomalous ~ pore" effect suggesting an interaction between 
the inward and outward fluxes (Hodgkin & Keynes, 1955). Hille (1971) has 
noted that sodium ion passes through the sodium channel with at least one 
water of hydration and suggests a hydrogen bonding mechanism for the 
transport process. Although these developments can be incorporated into 
the phenomenological framework of irreversible thermodynamics, the 
detailed picture of membrane transport permits a more basic starting point. 
By suggesting a molecular model for the transport process, membrane fluxes 
may be calculated for comparison with both experimentally observed 
phenomena and the predictions of irreversible thermodynamics. A primary 
purpose of this work will be the illustration of events within the membrane 
itself which may be masked by the phenomenological approach of irre- 
versible thermodynamics. 

Utilization of a discrete state stochastic approach to membrane transport 
permits the definition of parameters which do not arise naturally in irre- 
versible thermodynamics. Using stochastic membrane models for the mem- 
brane, the distribution of permeant within the membrane will approach a 
time invariant configuration although a membrane flux is maintained. This 
configuration can differ significantly from the equilibrium configuration and 
is determined by the membrane flux. Since under steady-state conditions the 
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entropy production associated with the diffusion flux is continuously 
absorbed by the external bulk solutions, the membrane state and entropy 
remain constant in time. Because of the time invariance of the membrane 
configuration, a statistical entropy can be determined for the stationary 
membrane state for comparison with the equilibrium entropy. The entropy 
of the stationary state is lowered relative to the equilibrium state due to the 
ordering effect of the flux. This serves as a specific quantitative example of 
the entropy reducing properties of a flow system which has been discussed 
generally by Morowitz (1968). 

Membrane Models 

A stochastic formalism for discrete state processes in the membrane 
functions as a common basis for a variety of models which are based on the 
existence of discrete states within the membrane. Because of the generality 
of the approach, carrier models, discrete site binding models and "hole"  
diffusion models differ only in the definition of states for the system. For 
example, Parlin and Eyring (1954) developed membrane transport as a 
series of discrete site transitions using transition state theory. Both Hladky 
and Harris (1967) and Macey and Oliver (1967) have suggested models for 
the "long pore" effect observed in the potassium channels of excitable 
membrane (Hodgkin & Keynes, 1955). Hill and Kedem (1966) have con- 
sidered a variety of transport models using stochastic processes and graph 
theory. Although their approach is excellent for the determination of 
stationary configurations for complex systems, it is difficult to extend to 
relaxation phenomena. Vol'kenshtein (1969) uses transform techniques to 
develop the time dependence in the framework of graph theory. 

For channel models of membrane transport, two models representing 
opposing ends of the spectrum are often used. In the "long pore" channels, 
a set of binding sites are accessible to the ions. When the channel is opened, 
ions bind to all the sites creating an electroneutral configuration. Transport 
then proceeds by a knock-on mechanism in which all the ions are simul- 
taneously displaced by one site producing a net transport through the 
membrane. Only a single membrane state is possible and this state is not 
altered by a change in the net membrane flux. Temporal variation is observed 
only when the channel is initially opened (Macey & Oliver, 1967). 

In the sodium channel, the independence principle suggests the presence 
of a single ion in a channel at a given time. In this case a variety of states 
are possible. The hydrated sodium ion generates a new state for each site to 
which it binds. If there are N such sites, the hydrated sodium bound to the 
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first site will be state 1, etc. If the hydrogen-binding energy is relatively 
small, the transport will be similar to a free diffusion through the chan- 
nel. 

Intermediate cases can also be incorporated in the stochastic framework 
as well. For example, if more than one ion can enter the channel at a given 
instant, this situation can be included as an additional set of stochastic states. 
The method is also easily extended to competitive systems such as the 
calcium-sodium competition model recently proposed by Heckmann, Linde- 
mann, and Schakenberg (1972). Carrier systems are included in a similar 
manner by defining the carrier permeant complex as a new membrane state. 
The inclusion of carriers will introduce a bimolecular condition into the 
stochastic transition probabilities but this analysis is also amenable to 
stochastic analysis (Staff, 1967). For this study, bimolecular systems will 
be assumed pseudo-first order to facilitate a linear analysis. The implications 
of higher order membrane processes will be explored in a future paper. Some 
of the major modes of membrane transport are illustrated in Fig. 1 including 
"hole"  diffusion which is the discrete state analogue of the diffusion 
process. 

To illustrate some of the basic properties of stationary state membrane 
configurations, the transitions between states are assumed linear 

P,Jfi (1) 

where P~i is the transition probability per second from state j to state i and 
f~ is the concentration in the j-th state. The concentration f j  will be the 
average concentration in the j-th state determined by examination of an 
ensemble of channels or regions in the membrane. The normalized con- 
centration gives the probability that a given channel is in a specific state. 
The normalized distribution will be used here. The choice of linear transition 
probabilities permits the use of matrix analysis. 

In this first paper, analysis will be restricted to microcanonical systems 
where all states have identical energies. This choice restricts the absorption 
or emission of energy from the membrane during the flow process. The 
transition probabilities may differ by having different activation energies 
but this will affect only the rate of transition rather than the system energy. 
The microcanonical membrane system is illustrated in Fig. 2. One conse- 
quence of the equal energy provision is the equality of forward and reverse 
transition probabilities for a given transition between two states. In the 
mierocanonical system, permeant redistribution within tile membrane can 
be considered in the absence of energy redistribution. This restriction is 
eliminated in the second paper. 
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Fig. 1. Discrete membrane permeation models. (a) Diffusion via thermally generated 
"holes" in the membrane structure. (b) Single file diffusion through potassium channels 
in excitable membrane; an entering ion displaces an ion into the opposite bath. (c) Indi- 
vidual ion diffusion through membrane channels. Binding sites may be present within 

the channel 

F r o m  the transi t ion probabili t ies,  the total  ra te  of change for  the state i 

can be determined as 

d f J d t = Z p , i f i - f ,  Zp~i i= 1, ..., N (2) 
J 
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Fig. 2. Activation energy diagram for microcanonical transition probabilities in a four- 
state nearest model 

where the first term determines the net gain of state i while the second term 
determines its net loss. The choice of linear transition probabilities permits 
the reduction of the N separate rate equations for the states i into the matrix 

"Mas t e r "  equation of the system, 

dlf)/dt= - /3  If(t)); [f(O))=[f ~ (3) 

where [ f ) i  =f,,  [P]~j = - P i j  and [/3]ii= +~.p~i. Since there are no transi- 
tions to states outside the system, the columns of the matrix sum to zero. 
This is the formal condition of mass conservation. Under such conditions, 
the matrix 13 is singular and at least one zero eigenvalue exists. Such a 
system will be defined as a conservative system since, in the stationary state, 

the total concentration of species within the membrane will not be altered. 
The membrane flux will alter only the distribution of these species. Non- 
conservative systems where the total number of permeant species in the 
membrane depends on the coupling between the membrane and the bathing 
solution will also be considered in detail since their properties may differ 
markedly from the conservative systems. 

For a system with a state distribution vector [ fo)  at the initial time 
t--0, the Master equation can be solved formally as 

If(t)) = exp ( -  P t) [fo) (4) 

which can be spectrally decomposed to the more tractable form 

f(t) = Zo ]fo) + ~,, exp ( - )ol t) Zi ]fo ) (5) 

where 21 is the i-th eigenvalue and Z~ = ] O~) (O~] is the projection operator 
for the i-th eigenvalue. If sufficient time is allowed, the components of the 
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nonzero eigenvalues will decay to zero leaving only the equilibrium, 20 =0 
component, 

Ifeq> --20 If ~ = 1~o) (~o If ~ (6) 

which is time invariant. Since mass must be conserved throughout the relaxa- 
tion process, the total mass of the system must reside entirely in the equili- 
brium component. If the summation vector <ul =(1, 1, ..., 1) is applied to 
the eigenvalue projections, we find 

<u2ifO> =gO/" (7) 

Although the nonzero eigenvalues can perturb the distribution they can 
add no net mass to the conservative system (Prater & Wei, 1962). When the 
system is perturbed from equilibrium, the relaxation back to equilibrium 
is described by the exponential decay of the eigenvalues. A pure exponential 
decay will be observed only for a single-state relaxation or under conditions 
where the lowest nonzero eigenvalue is well separated from the other eigen- 
values. The larger eigenvalue terms then decay rapidly relative to the lowest 
eigenvalue and an exponential decay is observed on the slower time scale. 

The Stationary State 

If the membrane is placed between two baths of different concentrations 
of permeant species, then the baths can influence the membrane configura- 
tion in two distinct ways. If the transition probabilities are altered by the 
concentration or electrochemical gradient between the two baths, the con- 
servative system will evolve to a new equilibrium distribution consistent 
with the new transition probabilities. Such a situation could arise even if 
there were no flow of material through the membrane. 

To create a nonequilibrium configuration within the membrane, per- 
meant molecules must flow through the membrane. Molecules or ions will 
be assumed to populate the state i at some constant rate Ji. Although these 
inputs will normally populate states located near the membrane boundaries, 
the actual states populated from the baths will depend on the specific model 
chosen. The rates will remain constant if the baths are large enough so that 
the bath concentrations are unaltered by the passage of permeant. The 
choice of large concentration maintains the total system in a nonequilibrium 
state since the net rate approaches zero as the system comes to equilibrium. 
The flux between the membrane and bulk phase can be related to the bath 
concentration c~ through the relation (Mazur & deGroot, 1962) 

Jl = k/c b (8) 



44 M.E. Starzak: 

where Cb is the bath concentration. This concentration can be held effectively 
constant on the time scale of interest through the use of large volumes of 
bathing solution so that the input of permeant remains constant. However, 
the output from membrane to the baths may be either independent or 
dependent on the concentration of permeant species in the membrane. Since 
these two possibilities generate two distinct types of stationary state be- 
havior, they will be examined individually. 

Conservative Systems 

A conservative system is a system where the net flux through the mem- 
brane remains constant independent of the state of the membrane and the 
input and output fluxes are equivalent. For example, the "long pore" model 
requires an entering ion to displace an ion into the bath at the opposite end 
of the channel to preserve electroneutrality. In this case, since only a single 
state is possible, the rate of flow will not alter the membrane configuration. 
If the membrane concentration is high relative to one of the baths, the rate 
of efflux will obey Eq. (8). Thus, when e(Bath 1) > c(membrane) > c(Bath 2) 
steady inputs and outputs can be generated. The rates of influx and efflux 
j~ for each state i can be expressed as a vector I j > and the transport equation 
becomes 

dlf)/dt= _ /3 ] f )+ [ j ) ;  l f(0)) = [fo). (9) 

Because the conservative _P matrix is singular, this equation cannot be solved 
formally. Integration of the spectrally decomposed matrix produces the 
solution 

[f(t)>=Zo(lf~176 (10) 

for the general case. To prevent the linear increase of the equilibrium 
population distribution with time, the flux ]j > must have no projection on 
the equilibrium eigenvector. The flux components j~ must be chosen so the 
inputs exactly balance the outputs, i.e., ~j~=O. This conservative flux 
redistributes the populations of the states but does not augment the total 
population. In the limit of long times, the system evolves to a stationary 
state distribution 

If s~) =20 if0> + ~  ~ IJ>/)o~. (11) 

Since the equilibrium configuration appears in the first term, the remaining 
terms represent the difference between the equilibrium configuration and the 
stationary state. 
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Nonconservative Systems 

In the analysis of the conservative system, the invariance of the total 
population of permeant species within the membrane was established. An 
alternative situation arises when the rate of efflux from the membrane is 
dependent on the population of the membrane states. By assuming a constant 
influx vector and a population dependent efflux vector, the rate vector for 
the nonconservative stationary state becomes 

[j') = [j) - /~  If(t)) (12) 

where K is a diagonal matrix of the form [K]~=k~ where k~ is the first- 
order rate constant for the transition from membrane state i to one of the 
bulk solutions when such a transition is consistent with the specific mem- 
brane geometry for the model. For example, in an N-site channel model, 
kl and kN will be nonzero. The transport equation becomes 

d [f) /dt= - ( f i  +/()  If(t)) + [j) = -/~ If) + [J). (13) 

Because of the matrix R, the matrix R is nonstochastic and no zero eigen- 
value exists. The general solution is 

[ f ( t ) )=exp ( -R t ) [ f~  + {(1--exp(-Rt)}  R -x [j) (14) 

with spectral decomposition 

[ f ( t ) )=~exp-(2i t )Z~[f~ (15) 

After a relaxation period, the distribution evolves to the stationary state 

If s~) = ~ Zi Ij)/2,= R-  l I j) .  (16) 

In the absence of fluxes j from the bulk solutions, all permeant molecules 
are lost irreversibly from the membrane. The configuration must be main- 
tained by arbitrary input fluxes from either or both bathing solutions. If 
both flux inputs are equal (equal bath concentrations) the membrane comes 
to dynamic equilibrium with the baths. 

Properties 

Because the properties of the stationary state systems depend on the 
nature of the transition probabilities which constitute the P matrix, the 
characteristics of these transition probabilities will be explored in detail. 
Because the microcanonical transition probability matrix is symmetric, the 
eigenvalues which determine both the relaxation times and the stationary 
state distribution will all be real. For relaxation to a stable stationary state 
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they must also be greater than or equal to zero. For these stochastic systems 
this is easily verified using Gersgorin's theorem; the system eigenvalues all 
lie within circles of radius 2[P~jl centered at [P]~ i. Since [P]~ - -21P ~jI for 
the conservative case, 

0<2~< + 2 ~  tP~jl. (17) 
i 

The addition of the matrix K in the nonconservative case retains the same 
radius but shifts the eigenvalue spectrum along the positive axis so that the 
eigenvalues lie entirely in the positive region with no zero eigenvalue. The 
matrices will relax monotonically to a stable stationary state. 

Since the membrane will relax to the stationary state and will remain 
time invariant in that state, a statistical entropy can be defined. Since the 
transition probabilities are determined by averaging over a large number of 
channels, the configuration is the average configuration over these channels. 
The statistical entropy is 

S= - k  Z f i ln  fi. (18) 

The entropy will be the characteristic variable for the microcanonical system 
considered here. Since configuration redistribution has no effect on the 
total energy of the membrane, the free energy for the system can be defined as 

G=kTEf~lnf i .  (19) 

The entropy of Eq. (18) is an entropy per channel. In the conservative case, 
the flux through the membrane does not alter the total number of particles 
in the channel and the normalizing factor remains constant. For the non- 
conservative case, the total number of permeant species within the channel 
varies with the flux and the system must be normalized for each stationary 
state. The normalized stationary state is 

f~s = (2  Z2 [J)/2i)/~ (,uZi J)" (20) 

Since the total number of species varies during the relaxation to the sta- 
tionary state, this normalization is valid only at the stationary state. 

Although the stationary configurations permit thermodynamic analysis, 
such analysis is dependent on the determination of the transition proba- 
bilities for the system. Although the stationary configurations are a function 
of the transition probabilities through the relaxation constants 2u a time 
dependent analysis of the change in membrane flux with time provides a 
more accessible experimental bridge. The system can be perturbed from its 
stationary configuration and its relaxation to the same or a new stationary 
state can be monitored by observing the resultant variation in membrane 
flux. Such analysis is possible only for the nonconservative systems. If the 
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conservative flux is suddenly changed to a new value, an internal redistribu- 
tion of permeant  species occurs which is not  observable as a change in flux 
since the flux is fixed. In the nonconservative system, the net flux through 
the membrane will exhibit a temporal  variation since the flux depends on 
the instantaneous internal membrane configuration. The net flux through 
the membrane can be determined by observing the net change in flux at an 
interface. The net flux f rom bath 1 into the membrane  is 

- n e t  flin =fli - kl f~ (t) (21 a) 
while the net efflux is 

- n e t  . t flout = f i N  - -  kN fN( ). (21b) 

For  the nonconservafive systems, these fluxes will be equivalent in the 
stationary state. 

If the flux vector I j> is suddenly jumped  to a new flux vector IJ'>, the 
relaxation of the membrane to its new stationary state is 

If(t)> = R- 1 i j,> + exp ( - R t) R- i I (J +J'))  

= Z {Z, I j'>/2,} + Z {exp ( -  2, t) Z, I (J +j'))/2,}. (22) 
i 

F r o m  Eq. (21 a, b) the net flux is then 

( ([j '>-KR -1 Ij'>)+ K exp(--Rt)R- '  l(J +J')> 

= (j'> - ~  {KZ, [j'>/2,} + ~ {exp ( -  2, t) KZ, l(J +j'))/2,}. 
(23) 

The first and N-th components  will be the only nonzero components  
corresponding to influx and efflux, respectively. The fluxes will relax as a 
sum of exponentials as expected for such a linear system. 

Eq. (22) assumes an ideal relaxation condition where the flux changes 
instantaneously to its new value and variation in the net flux is due entirely 
to redistribution of the configurations. If this change to the final input  flux 
takes place on a time scale comparable with the relaxation times, the time 
dependent  variation in the flux must  be included in the integration of the 
transport  equations. 

In practice, a rapid concentration change in the bathing solutions to 
facilitate a relaxation is difficult to accomplish on a time scale short relative 
to the relaxation time scale. A more rapid flux change is possible when the 
permeant  species are ions flowing along a potential gradient. A double 
pulse experiment can be used to change the membrane potential rapidly 
and the relaxation to the new stationary configuration can be observed as a 
variation in membrane current. The relaxation will occur even if the mem- 
brane parameters do not  change during the relaxation. When both  the 
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transition probabilities and the currents change with potential on a com- 
parable time scale, the analysis becomes more complex but the basic sto- 
chastic framework can be retained. 

Nearest Neighbor Models 

Conservative Systems 

Because of the restricted geometry expected for membrane channels, 
nearest neighbor transitions, where a permeant may move only to adjacent 
sites within the channel, may provide an accurate description of membrane 
transport. Nearest neighbor models have been developed by Parlin and 
Eyring (1954), Hladky and Harris (1967) and Macey and Oliver (1967). A 
nearest neighbor transition probability matrix has the Jacobi or tridiagonal 
form. Because of the restriction of microcanonical transition probabilities, 
the forward and reverse transition probabilities between a pair of sites are 
identical although the magnitudes of transition probabilities between dif- 
ferent pairs of sites may differ. The nearest neighbor models are shown in 
Figs. 2 and 3. The matrix for the transition probabilities will be symmetric 

[P ]u  = b,; [P ] , . ,+ I  = [ P ] , . , + i  = - a , .  (24) 
of the form 

For a conservative system 

b,= [P]u = Z PJ," (25) 
i * j  

To illustrate the properties of nearest neighbor models most effectively, an 
identical site model is used. The N sites will then have identical transition 
probabilities. If a channel model is assumed with no more than one permeant 
species in a channel at a given instant, then the transition probabilities are 
averaged transition probabilities based on an ensemble average of a large 
number of identical channels in the membrane. The final distribution will 
be an average distribution for all these channels. The relaxation eigenvalues 
are (Hildebrand, 1968) 

2~=4psinZ(r~r/2N) r=0, ..., N - I .  (26) 

Despite the equality of the transition probabilities, a spectrum of eigen- 
values is produced. As the number of channel sites increases, the lowest 
nonzero eigenvalue approaches the equilibrium zero eigenvalue as illustrated 
in Fig. 4. 
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Fig. 3. A three-site membrane channel for membrane transport in a nearest neighbor 
model with microcanonical transition probabilities 

The normalized equilibrium eigenvector is 

,~0 = 1/N (27) 

and all states are occupied with equal probability. If a conservative flux I j )  
is applied to the terminal states, the k-th state will evolve to a stationary 
population 

[/~s) k = ]feq)k + (j/p) ~ At(2 tan ~b sin q~)-i cos (2 k -  1) q5 

A , = ~  cos z ( 2 k -  1) (28) 

[FS)k= +lfeq)k+]f)k;lf)k=--if)N-k=(j/p)(N--2i+l)/2 (29) 

where q~ =rrc/2N and the summation is restricted to odd n since the sym- 
metric (even) projection operators are orthogonal to the (odd) flux 
vector [ j ) .  

4 J. M e m b r a n e  Biol .  13 
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Fig. 4. Relationship between smallest nonzero eigenvalue 2 and the number of membrane 
binding sites N 
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Fig. 5. The eigenvalue components of the stationary state distribution of a nearest 

neighbor model. The components produce the linear distribution 
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Fig. 5 illustrates the final stationary state distribution and contributions 
from individual eigenvalue projections for a six-site model. Although the 
relative contributions from the higher eigenvalues decrease rapidly the 
summation of all contributions produces a linear membrane configuration 
as stated in Eq. (29). By comparison, a linear concentration distribution is 
postulated in the Henderson solution of the Nernst-Planck equation to 
predict the membrane potential. The linear distribution arises naturally 
from first-order transition probabilities and steady fluxes. 

The Eyring-Parlin model is more complex because arbitrary transition 
probabilities are allowed. The model is canonical since the states need not 
be at the same energy. In the Eyring-Parlin model, the nearest neighbor 
transition probabilities have the form 

[P]u= - (k ,+  k~); [P]~., , ,= k,; [P]~_ 1,~= k, (30) 

and the membrane flux is conservative withjl  = j  andjN = - j  for the terminal 
states. To derive the Eyring-Parlin form, the general stochastic equation 
with conservative flux is solved under stationary state conditions 

d ]f)/dt =0=  - P  If} + I J} (31) 

Ij)=PIf) 
which produces the equations 

(32) 

j=klf l-k 'zf2 

j=k2f2-k'3f3 

J=kN-~fN-1 --kNfN 

(33) 

which are identical to the starting equations of Eyring and Parlin. The 
stochastic formalism can determine both the stationary state behavior and 
the relaxation properties of the system to the stationary state. However, the 
conservative system relaxation will not be manifested in an external flux 
variation since the external flux is fixed for these models. Relaxation must 
be observed with an internal probe. 

While nearest neighbor channel models with equal transition proba- 
bilities provide excellent models for examining the properties of membrane 
flow systems, they introduce a high degree of symmetry into the membrane 
structure which may not appear in an actual membrane. The symmetry 
leads to cancellation of the symmetric projection operators in the membrane 
distribution function. These modes will be lost for any system where the 
4* 
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transition probabilities are symmetric about the membrane center since 
such conditions will lead directly to sets of symmetric and antisymmetric 
projection operators. This observation is important for lipid bilayers which 
would be expected to have symmetry about a central point. In a canonical 
system where an external field can alter the transition probabilities, this 
symmetry can be destroyed by the application of such a field. If the transi- 
tion probability matrix possesses no intrinsic symmetry, the stationary 
distribution will be a summation of all the eigenvalue projection operators 
of the system although the symmetric contribution will be small in a con- 
servative system. 

The Nonconservative Nearest Neighbor Model 

For the nonconservative microcanonical nearest neighbor model, the 
transition probability from a terminal membrane site to the bulk solution is 
finite. Because of the transition across a phase boundary, the transition 
probability can be markedly different from the internal transition proba- 
bilities. To facilitate comparison between these models and the conservative 
models with equal transition probabilities, the terminal transition probability 
is assumed to depend only on its membrane state and will thus be identical 
to the internal transition probabilities. 

The transition probabilities are 

[P]u=Zp; [P~i_l,i=[P]i+l,i=-p i=1, . . . ,N (34) 

with eigenvalues (Hildebrand, 1968) 

2r=4p sin 2 {rTr/2(N+ 1)} (35) 

and eigenvector components 

Ork=(2/N + 1) sin {4krc/(N + 1)} (36) 

leading to the stationary state distribution 

IfSS>k=~(2/N+ 1) {sin rTc/(N+ 1)}(jl +( - 1) r+ ljN) 
r 

�9 (p2~) - t  sin {rk~z/(N+ l ) }  (37)  

= [ ( N - k  + 1)/(N+ 1)] (j~/p) + [k/(N+ 1)1 (jN/P) 
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where j~ and JN are uncorrelated fluxes from the bulk solutions. Despite 
flux imbalances between j~ and iN, the system will attain the stationary 

value 

jnet = (Jl +jN)/N + 1. (38) 

The net membrane flux through the membrane is the sum of the input fluxes 
reduced by the factor N + 1. The net flux for a multi-state model is not the 
flux difference between the input fluxes. Instead both fluxes contribute to 
give a stationary distribution which regulates the net flux observed as a net 
influx or net efflux at an interface. 

Because both input fluxes j~ and JN are uncorrelated, the input vector 
l j )  is completely arbitrary with contributions from both the symmetric and 
antisymmetric projection operators. However, the symmetric projection 
operators will give terms of the form 

(Jl +Js) exp-2i t  l el) (39a) 

while the asymmetric projection operators will give expressions involving 
the difference in input fluxes 

(J a --JN) e-  x~t [ c~.dd). (39 b) 

For this reason the observed relaxation of the flux to its stationary con- 
figuration will be dominated by the symmetric projection operators when 
the fluxes into the membrane are large and of comparable magnitude so that 
/1 +iN is very large relative to i l  -iN. Under such circumstances, the observed 
decay of the net flux to its stationary state value will appear exponential. 
The apparent exponential nature of the decay is enhanced since the smallest 
eigenvalue, which dominates the relaxation process, is associated with a 
symmetric projection operator. The decay of multi-state models with two, 
three and six states is shown in Fig. 6. 

Although the net flux relaxation for two- or three-level models will not 
be pure exponential, the difference between input and output fluxes can 
differ from zero and the relaxation of this difference will be a pure ex- 
ponential decay. The situation arises because of the cancellation of the 
symmetric modes when the difference between influx and efflux is formed. 
For ionic systems, the difference between influx and efflux during relaxation 
creates a charge imbalance within the membrane during relaxation. This 
phenomena will be explored in a later paper. 
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Fig. 6. Relaxation of the logarithm of net flux (j_js~) for two- and three-site membrane 
models illustrating the first-order relaxation properties of symmetric two- and three-level 

models 

Thermodynamic Analysis 

Although the stationary state distribution of permeant species led directly 

to information on the net membrane flux, the time invariance of this state 
permits the definition of statistical thermodynamic variables as well. The 
entropy and free energies arise naturally in the microcanonical system and 
provide a measure of organization and work potential within the membrane. 
The parameter characteristic of both the stationary state distribution and 
the thermodynamic variables is the time independent parameter (j/p). 

For the conservative system, the entropy is determined from com- 
plementary pairs of distribution states 

[feq)k• (40) 
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where 
M 

dk = ~, Ar (2 tan ~b sin qS)-' = (j/p) (N - 2 k + 1 )/2 
r (41) 

M = k/2, M even; M = ( k -  1)/2, M odd. 

This separation will hold whenever the membrane has a center of symmetry; 
in other cases, all terms must be summed individually. The statistical 
entropy is 

S = - k ~  {[feq)k + dk(j/p) } In {]feq)k + dk(j/p)} 
k (42) 

+ { jfeq) _ dk(j/p)} In { f eq_  dk(j/p)}" 

When the membrane flux is small, the entropy may be expanded about 
equilibrium to give 

M 

S = S eq - • (j/p)2 d~ N 2. (43) 
k 

The entropy of the membrane is reduced quadratically with a linear increase 
in the membrane flux. The time independent ratio (j/p) can be contrasted 
with the irreversible thermodynamic dissipation function for the system 

T(o = L(T)  dZ (44) 

where L is the linear coupling coefficient for the phenomenological forces 
as a function of the fluxes. Although the baths create entropy, the membrane 
entropy remains constant. The entropy in the stationary state is independent 
of the flux direction and always leads to a reduction in the equilibrium 
entropy which is consistent with the equilibrium state as the configuration 
of maximum entropy. 

The nonconservative system has no stable equilibrium state in the 
absence of a membrane flux. The nonconservative microcanonical system 
has the normalized stationary state distribution 

If}k = {2/N (N + 1)} {(N+ 1 - k ) j j  + k js ) / ( j  ~ +J2)} (45) 

which separates into symmetric and antisymmetric distributions of the form 

] fss)k=(1/pN)( j l  + j N ) + { ( j l - j N ) / p N ( N + l ) } ( N - 2 k + l ) .  (46) 

Since the nonconservative system will normally involve two positive inputs 
from the bathing solutions, the symmetric term involving the sum of input 
fluxes is dominant and provides a point of expansion. The statistical 
entropy is 

S = - k [{(Jl +JN)/P} In {(Jl +JN)/PN}] 
(47) 

+ (jj -jN) 2 ( N -  1)/{(jr +JN) (6 p) (N + 1)}. 
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Both the symmetric and antisymmetric terms in the stationary state expres- 
sion contribute to the total entropy. 

Because only microcanonical systems are examined in this paper, the 

energy and enthalpy are independent of the stationary state configuration. 
The internal energy of the equilibrium state can be defined as zero. For the 

microcanonical system, the free energy is 

G = - T S  (48) 

so that the stationary state entropy is a direct measure of the system's 

ability to do work at a temperature T. 

The presence of a stationary configuration permits a mode of coupling 

between the flux and allosteric transitions involving membrane constituents 

which is illustrated with a simple model. Assume at least one of the mem- 

brane sites is amenable to an allosteric transition which is mediated by the 

concentration of permeant at that site. The flow of permeant is assumed 
fast relative to changes in membrane configuration so that the residence 

time of the permeant ion at the sites produces a steady concentration on the 
allosteric time scale. For  convenience a single membrane site undergoes an 
allosteric transition since the generalization to multiple sites is readily 

apparent. The situation is illustrated in Fig. 7. The average concentration 

@ 
s 

K 

T 

Fig. 7. A simple allosteric model for a membrane channel site where the site is capable 
of two distinct allosteric sites R and T and substrate S binds only to R 
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at site k is S--Mfk where M is the total number of channels. If binding is 
permitted only to the allosteric state R, the fraction of channels with the 

site in the R configuration is 

(R) =(1 + K~ S)/(1 + K 1 S + K) (49) 

where K1 is the association constant for the permeant and K is the allosteric 
transition equilibrium constant. Blumenthal, Changeux, and Lefever (1970) 
have utilized an allosteric transition model to describe nerve excitation 
phenomena by including a cooperative interaction between allosteric units. 
Graph theory is used to establish the stationary concentrations. The sto- 
chastic method developed here emphasizes that the energy necessary to 
facilitate such transformations is stored in the stationary state configuration. 

Discussion 

The choice of a discrete state model for the description of membrane 

transport was dictated by a variety of reasons. The examination of specific 
models provided a basis for comparison with the phenomenological ap- 
proach of irreversible thermodynamics and showed that certain relaxation 
modes could dominate the relaxation of the membrane influx or efflux. 

The discrete membrane models possess some computational advantage 
over continuum equations such as the Nernst-Planck equation for membranes 
less than 100 nm thick. For such molecular dimensions, transport through 
the membrane is accurately described as a series of jumps between "holes" 
in the membrane structure or passage through channels where interaction 
between the channel walls and the permeant species is possible. These intra- 
membrane transitions can be extended to include transitions to dipole 
layers, unstirred boundary layers, etc., by introducing additional transition 
probabilities and including these regions as new membrane states. 

The development of nonconservative transport models for the membrane 
rather than conservative models such as the Eyring-Parlin model provides 
a basis for observation of relaxation of the membrane when perturbed from 
its stationary distribution. The time dependence of the net flux through the 
membrane is determined by the relaxation times generated by the transition 
probability matrix. In the models considered here, the transition proba- 
bilities were assumed constant over the linearized range of stationary state 
behavior. This hypothesis can be tested by observing the relaxation period 
for a variety of stationary states. The situation is more complex when 
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changes in the bathing solution potentials can affect the transition proba- 
bilities as well. This will be discussed in the second paper. 

To determine the nature of relaxation within the membrane, internal 
probes must be used. Allosteric transitions which are mediated by the 
stationary state configuration provide one possibility. An alternative possi- 
bility is the addition of spectroscopic probes to the membrane system. For 
example, aequorin can be used as a sensitive monitor of calcium ion changes 
during a relaxation process if it is present near one of the membrane states 
of interest. 

Because the membrane configuration remains stationary for a constant 
dissipation rate in the baths, statistical thermodynamic variables could be 
defined to provide a common basis of comparison between a variety of 
membrane systems. Morowitz (1968) has emphasized the necessity of 
stationary state conditions for effective biological organization and the 
stationary state membranes provide a quantitative example of such behavior. 
The steady flux creates a potential which can be utilized to do work within 
the membrane when this flux is changed. Because of this potential which is 
characteristic of the stationary state, the actual potentials necessary to 
facilitate electron transfer or chemical processes within the membrane may 
differ considerably from equilibrium predictions. The use of equilibrium 
free energies to describe the intra-membrane process must be corrected for 
this stationary state potential if the system under consideration is a 
flow system. 

Both the stationary state behavior and the thermodynamic properties 
are dependent on the ratio of membrane flux to the characteristic transition 
probability for the system (j/p). This time independent ratio is a measure 
of the ordering effect of the flux relative to the randomizing effect of the 
transitions within the membrane. If the net flux through the membrane is 
examined, the factor (j/p) in the stationary state expression will be multiplied 
by p to reproduce the flux which is the observable of irreversible thermo- 
dynamics. Although expressions for p do not arise naturally in the phenom- 
enological approach of irreversible thermodynamics, the magnitudes of 
the transition probabilities can be determined experimentally from relaxation 
studies of the net flux through the membrane under perturbations from the 
stationary state. The experimental studies can be used to establish the range 
of the linear stochastic models and the nature of the stationary configu- 
ration. 

The statistical thermodynamic variables defined for the stationary state 
are analogous to those defined for the equilibrium state. Since the Boltz- 
mann entropy expression is valid for any time independent system, it 
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provides  the c o m m o n  bridge between the s ta t ionary and equil ibr ium states. 

Equi l ibr ium the rmodynamic  variables are character ized by  their state 

p roper ty  and it is interesting to determine whether  a similar p roper ty  can be 

defined in the s ta t ionary state systems. If a t ransi t ion to a new s ta t ionary 

state is induced by  a change in the membrane  flux, a relaxat ion process will 

ensue and the system will evolve th rough  a series of states which depend on 

the nature  of the per tu rba t ion  applied. To  provide consistency with 

equi l ibr ium thermodynamics ,  the s ta t ionary state en t ropy  must  be defined 

in terms of " r eve r s ib l e "  transi t ions;  the only pa th  permit ted  for  the calcula- 

t ion of s ta t ionary state en t ropy  changes will be the pa th  with minimal  

relaxat ion states. The  transi t ion between s ta t ionary states proceeds th rough  

a series of s ta t ionary states. This eliminates t ime dependence  f rom the 

calculat ion of the s ta t ionary state properties.  The approach  is limited to 

the linear range postulated in the stochastic equat ions since the presence 

of phase transit ions or  dissipative instabilities will induce discontinuities 

in the equat ions  and complicate  the analysis. 
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